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ABSTRACT 

In this study we present a model of speech 

perception in which (1) memory includes a single, 

ordered collection of acoustic cues extracted at 

landmark locations from previously heard signals 

and encoded to preserve temporal patterns, and (2) 

identification of newly encountered sounds 

involves comparing the sounds—and their 

surrounding contexts—with similar sequences 

occurring in memory. Under these assumptions, 

perceptual speaker and rate normalization and 

context dependence in general follow implicitly 

from the statistics of the language environment and 

do not require traditionally assumed processes or 

levels of representation. We verify this by means 

of a simulation in which the model simultaneously 

acquires VOT and F1 cues to consonant voicing 

and vowel height, and their dependence on 

speaking rate and speaker gender, based on 

exposure to productions from the TIMIT database.  

1. INTRODUCTION 

Exemplar approaches to phonetic 

perception, acquisition, memory and evolution 

emphasize the role of high-order statistical 

regularities that occur over large numbers of 

perceived (or produced) utterances, and question 

the need for abstract rules, processes, and 

structures that have traditionally been used to 

explain these regularities [e.g. 1, 2, 3, 4]. One key 

prediction of such an approach is that a memory of 

richly specified phonetic representations can result 

in automatic, implicit perceptual compensation for 

the effects of context (segmental, speaker, rate, 

etc.) on the acoustic realizations of speech sounds. 

If perception involves comparing a newly 

encountered sound with actual previously 

identified sounds, and if some of the dimensions 

along which this comparison is made include 

information about the context in which the sound 

occurred, then patterns of covariance between 

contextual and more “primary” cues are preserved 

in the identification process.  

Of course, this preservation depends on 

informative contextual cues being (1) sufficient 

and salient in the speech signal, (2) appropriately 

represented in memory, and (3) allowed to 

contribute to relevant comparisons. Although 

several quantitative phonetic exemplar models 

have been proposed [1, 2, 5], incorporation of 

context information so far is rarer and more 

speculative, especially where the context is 

distributed over time. In this paper, we introduce a 

unified model of context specification and use it to 

test whether acoustic cue distributions observed in 

speech production are sufficient to account for 

known perceptual compensation patterns. 

Specifically, we show that the temporal co-

occurrence of different cues to consonant voicing 

and vowel height in the TIMIT database trivially 

predicts “normalization” for gender and speaking 

rate in a model that references neither of these 

variables directly. 

In our model, there is no explicit structural 

analysis or segmentation of incoming speech. 

Memory consists simply of an ordered collection 

of richly specified, real-time descriptions of 

perceived sounds, not unlike a continuous 

recording of years of auditory input. This sequence 

is sparsely annotated with a record of other events 

that co-occurred with the speech, including 

analyses or categorizations. Perception, then, 

involves identification of annotations occurring 

near regions of memory that are similar to a 

(similarly specified) input pattern. In the present 

study, we assume that the acoustic descriptions 

consist of potentially informative parameter values 

extracted at salient landmarks in the speech signal 

[6]. For simplicity, we further assume (see 

discussion) that the labels correspond roughly to 

traditionally described distinctive features. 

Whenever landmarks are detected, the relevant 

cues are marked at corresponding locations in a 

continuous memory “signal”. During perception, a 

newly encountered sequence of landmarks 

“resonates” with similar regions of the memory, 

causing nearby labels to be activated. In the next 
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sections, we discuss context effects in a set of 

production data, and describe in detail how the 

data are stored and compared in the model. 

2. SPEECH DATA 

It is well known that first formant frequency is a 

primary indicator of vowel height, and that voice 

onset time is related to consonant voicing. 

However, neither cue (or any other) is sufficient to 

classify naturally occurring sounds, since F1 and 

VOT are also affected by (e.g.) speaker gender and 

speaking rate, respectively. Fortunately, humans 

have little difficulty compensating for these 

influences and make F1-based [height] and VOT-

based [voiced] distinctions appropriate for a 

particular context [7, 8]. 

 The acoustic data we considered were 

VOT, f0 and F1 values measured at consonant and 

vowel landmarks in the context of different rates 

and speakers. Specifically, we analyzed all of the 

sequences of stop consonants followed by the 

vowels [I] and [ε] in the training portion of the 

TIMIT database [9], across syllabic/prosodic status 

and speaker gender and dialect, a total of 1824 

tokens. Consonant landmarks were taken to be the 

first sample of a [b], [d], [g], [p], [t], or [k] burst as 

labeled in the database. Vowel landmarks were 

taken to be maxima in the envelope of the sound 

below 500 Hz during the regions labeled as 

consonant and vowel segments (the CV plus 50ms 

linear-ramped precursor and following context was 

low-pass filtered at 500 Hz, full-wave rectified, 

and then low-passed at 40 Hz). VOT was simply 

taken as the duration of the consonant release burst 

labeled in the corpus. F0 was derived using an 

autocorrelation-based algorithm, and F1 using the 

Burg algorithm (both as implemented in [11]) to 

find five formants below 5000 Hz (male speakers) 

or 5500 Hz (females). F0 and F1 values were 

averaged over a 40 ms window around the vowel 

landmark. Exemplars where pitch could not be 

estimated or with F1 estimates above 1000 Hz 

(<1%) were discarded. Finally, the dataset was 

trimmed such that the 4 CV sequence types 

([+voiced], [+high]; [+voiced], [-high]; [-voiced], 

[+high]; [-voiced], [-high]) occurred in equal 

numbers and such that the average consonant-to-

vowel landmark offset was as nearly equal as 

possible between voiced and voiceless stimuli. 

This was to minimize effects of coincidental a 

priori frequency of occurrence or average speaking 

rate on categorization. The result was a training set 

of 1000 exemplars, 250 for each [voiced]/[high] 

combination. 

Figure 1 shows the resulting distributions. As 

might be expected, VOT was influenced by 

consonant voicing, but also correlated with 

speaking rate—as reflected (indirectly) in the time 

between measured consonant and vowel landmark 

locations—for voiceless consonants. Similarly, F1 

was influenced by both vowel height and f0. Even 

in the 2-dimensional spaces there was a great deal 

of overlap for both distinctions, presumably related 

to prosodic, speaker, and dialect differences and 

other influences.  

Figure 1: Distributions of training stimuli in rate/VOT 

and f0/F1 space, best-fit lines for each stimulus type. 

 

2.1. Training stimuli 

Input to the model was a 3-dimensional sequence 

containing the acoustic measurements and 

annotated with feature labels. First, measured 

VOT, f0, and F1 values were normalized to a mean 

of 0, standard deviation 1. For each CV sequence, 

a point process was generated for each dimension 

that consisted of zeros everywhere except at the 

relevant landmark location, where it took the 

normalized parameter value. These sequences were 

sampled at 200 Hz and padded with 130 ms of 

silence.  

 Random encoding error was then 

introduced by distributing acoustic cue information 

over time, smoothing each sequence with a 

Gaussian filter (s.d. 10 ms). Stimuli were finally 

normalized to a total power of 1.0 and 

concatenated to the end of the memory sequence. 

[high] and [voiced] values (1 or 0) were marked at 

the center of a CV sequence. Sample stimuli can be 

seen in the top panels of Figure 2. Although we 

will not make any claims about the biological 
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likelihood of such a representation, it is worth 

noting that related methods are often used in 

describing correlated neural activity, and that 

learning rules have been proposed for similar 

temporal patterns [e.g. 10]. 

The training set consisted of the 1000 

exemplars shown in Figure 1, added to memory in 

a pseudo-random order.  No assumptions regarding 

attention or cue-weighting were made in the 

model; vowel and consonant landmarks 

contributed equally to the representation. 

2.2. Test stimuli 

Test stimuli were newly generated sequences 

composed in the same manner, to represent VOT 

and F1 continua in different rate and speaker 

contexts, respectively.  

For voicing continua, VOT varied from 0 

ms to 80 ms in 11 steps, in the context of either a 

50 ms (fast speech) or 120 ms (slow speech) 

consonant-to-vowel landmark offset. F1 and f0 

values were taken at random from the training set 

in 30 separate continuum categorization runs, so 

that the results did not depend on a particular 

vowel configuration. 

For vowel height continua, F1 varied from 

340-750 Hz, in the context of either a typical male 

(-0.8 normed value) or a typical female (0.8 

normed value) f0. VOT and landmark offset were 

taken at random from the training set in 30 

separate runs, so that results did not depend on a 

particular timing configuration. 

3. MODEL AND PROCEDURE 

Categorization by the model consisted of 

identifying feature labels near peaks in the 

summed cross-correlation function of a test 

stimulus with the memory sequence. The five local 

peaks (i.e. xi-1 < xi > xi+1) with the highest absolute 

values were selected, and the average of the 

nearest [voiced] and [high] labels rounded (to 1 or 

0) to achieve a classification in each dimension. 

An example of this process is shown in Figure 2. 

As demonstrated in the figure, sequences match 

better the more similar they are in both timing and 

(all of) the parameter values. Specifically, timing-

related match is related to the asynchrony of two 

landmarks by a Gaussian function that is 

determined by the width of the filter described in 

section 2.1. Critically, however, no explicit rate or 

speaker information is involved in the 

representation or comparison.  

Both VOT and F1 continuum stimuli were 

presented to the model in this way, and 

classification was averaged over the 30 runs for 

each condition described above.  

Figure 2: Slow (a) and fast (b) stimulus sequences 

(solid lines), memory sequences corresponding to the 

top 5 matches (dotted lines); and (c) location of test 

(asterisks) and memory (circles and triangles) stimuli 

in vowel-landmark-offset by VOT space (as in Fig. 1). 

 

4. RESULTS 

Average categorization of stimulus continua is 

shown in Figure 3. First, the monotonic decrease in 

[+voiced] and [+high] responses with increasing 

VOT and F1 indicates that, despite rate, gender, 

and dialect variability and without explicit 

segmentation the TIMIT data were sufficient to 

teach the model the importance of these cues (or, 

more precisely, that lower VOTs are likely to co-

occur with voiced consonant labels, and lower F1s 

with high vowels.) A possible exception was 

vowels with very high F1 values produced by male 

speakers, where (see Figure 1) there was sparse, 

probably unreliable training data. In addition, 

comparison of overall mean categorization across 

conditions indicated that both rate and speaker 

normalization effects occurred. On average, the 

model accepted lower VOTs as signifying 

voiceless consonants at faster rates (p=0.0015), and 

higher F1s as representing high vowels in higher f0 

contexts (p=0.0017). Importantly, these patterns 
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both mirror previously observed human context 

“normalization” effects [7, 8]. 

Figure 3: Classification of test stimuli across speaking 

rate (left) and speaker gender (right) contexts. 

 

5. DISCUSSION 

We have presented a quantitative model in which 

speech is remembered and perceived in context, 

without explicit normalization, segmentation, or 

unit categorization. It is often assumed that at least 

rate normalization is needed in order to avoid 

unmanageably large memory demand. We question 

this need, since exemplar models should predict 

rich memory specification in temporal as well as 

other dimensions, and in particular because we 

were able to model compensation for rate without 

normalization using a fairly small database of 

naturally occurring, highly variable productions. 

 The model described here is clearly 

incomplete, for several reasons. First, the 

variability shown in Figure 1 indicates that more 

than three dimensions will be needed to classify 

even the few sounds we considered across 

contexts, dialects, and speakers. Second, we made 

assumptions about representations in the model 

that need to be assessed empirically. In particular, 

we assumed that listener identifications and 

category markers in memory can be described in 

terms of traditionally assumed abstract, discrete 

features like [voiced] and [high]. We intended this 

representation as a shorthand for higher-order 

combinations of linguistic (perhaps word-, phrase-, 

or utterance level) and non-linguistic events or 

analyses, probably differing by listener and 

situation [e.g. 3, 12] that might have accompanied 

the sound sequence in memory. However, it may 

be that this simplification was not valid, and thus 

that we inappropriately imported assumptions 

about units from traditional theory. Similarly, the 

model assumes that speech signals are actually 

perceived and remembered as sequences of cues 

extracted at landmark locations. Human perception 

might not take the form of actively tracking, for 

example, F1 frequency. However, we assert that 

sets of cues like these are probably at least linearly 

related to what might be a more likely process, for 

example surprise detectors tuned to different 

frequency ranges, features, or parameters [2]. 

Finally, we did not include any reference to time 

decay of memory or attentional modulation in 

perception. We consider the present simulations to 

be conservative in not requiring these parameters, 

which could be straightforwardly included based 

on empirical data. 

 In sum, our results call into question some 

of the processes and structures that are needed to 

describe speech perception and memory. We 

suggest that exemplar models may go even further 

than is often assumed in accounting for phenomena 

traditionally ascribed to explicit normalization. 
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