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ABSTRACT 

A study of speaker-distinguishing properties of the 
formant dynamics of /uː/ is presented. Measure-
ments at equidistant intervals along the F1 and F2 
contours of /uː/ are compared with polynomial 
characterisations of the contours. Approximating 
the contours with quadratic and cubic polynomials 
allows more speaker-distinguishing information to 
be conveyed with fewer parameters. Based on 
discriminant analysis, the best value per predictor 
is provided by a quadratic approximation of F2.  

Keywords: speaker characteristics, formant 
frequencies, formant dynamics, SSBE, /uː/  

1. INTRODUCTION 

While research in speaker characteristics has 
traditionally focused on ‘static’ properties of the 
speech signal (e.g. a vowel’s formant frequencies 
at its midpoint), more recent work shows that 
dynamic (time-varying) features of speech carry 
important information about a speaker. Static 
features demonstrate differences among speakers 
since they are related to speakers’ anatomical 
dimensions, e.g. formant frequencies reflect the 
length and configuration of the vocal tract [11]. 
Dynamic features of speech, on the other hand, 
offer greater scope for variation among speakers, 
since they reflect the movement of the individual’s 
speech organs as well as anatomical dimensions. If 
speech is conceived of as a series of linguistically 
determined targets (canonically thought of as the 
‘centres’ of segments) linked by transitions, we can 
hypothesise that the targets are highly constrained 
by the shared language system, and that the 
transitions present greater potential for individual 
variation. In moving between targets in the stream 
of speech, the speaker has a large number of 
degrees of freedom available, and is likely to adopt 
an individual articulatory solution [6, 7, 9]. 

Formant frequency dynamics have been shown 
to offer speaker-specific information in a number 
of studies [1, 3, 5-7]. For example, McDougall [5] 

demonstrates considerable differences among five 
speakers’ F1-F3 dynamics for the sequence /ak/, 
using measurements at 10% intervals along its con-
tours. However further work is needed to develop 
efficient ways to capture and utilise this inform-
ation. McDougall [6, 7] attempts to characterise 
the formant dynamics of /ak/ with fewer paramet-
ers by fitting quadratic and cubic polynomials to 
each contour. This technique discriminated speak-
ers almost as well as the direct measurements.  

This study examines the formant dynamics of 
the vowel /uː/ in Standard Southern British English 
(SSBE) for a larger group of speakers (n = 20). 
The motivation for studying /uː/ was as follows. 
/uː/ has been observed to be undergoing change in 
SSBE [2] so it was hypothesised that, in addition to 
the reasons for analysing dynamic speech features 
above, variability among speakers in the 
production of this vowel could be expected. 
Further, as part of investigations undertaken in the 
DyViS project, when taking static formant 
measurements of the ‘target’ of various vowels, 
wide between-speaker variation was observed in 
the formant dynamics of /uː/. Speakers differed 
both in terms of the temporal location of the 
‘target’ for /uː/ and in their transitions to and from 
this target. /uː/ rarely exhibited a steady state and, 
as such, ‘monophthong’ is not really an appropriate 
description for the vowel. The present work thus 
aims to quantify between-speaker variation in the 
formant dynamics of /uː/. Measurements of its 
formant frequencies are taken along each formant 
contour, then fitted with polynomial equations. The 
original measurements and polynomial fittings are 
then compared with respect to their accuracy in 
distinguishing speakers.  

2. METHOD 

2.1. Subjects 

Subjects were twenty male speakers of SSBE, aged 
18-25 years (denoted S1, S2, …). The recordings 
were taken from the DyViS database [see 10]. 
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2.2. Materials and elicitation 

The data analysed are six repetitions per speaker of 
the vowel /uː/ receiving nuclear stress in the hVd 
context ‘who’d’. The target word was included in 
capitals in the sentence:  
     He hates contracting words, but he said a WHO’D today. 

Six instances of this sentence were arranged 
randomly among a number of other sentences. The 
sentences were presented to subjects one at a time 
using PowerPoint. Subjects were asked to read 
aloud each sentence at a normal speed, in a normal, 
relaxed speaking style, emphasising the word in 
capitals. They practised reading a few sentences 
before the experimental items were recorded. 
Subjects were encouraged to take their time 
between sentences and asked to re-read any 
sentences containing errors.  

2.3. Recording 

Subjects were recorded in the sound-treated booth 
in the Phonetics Laboratory at the University of 
Cambridge. Each subject was seated with a 
Sennheiser ME64-K6 cardioid condenser 
microphone positioned approximately 20 cm from 
his mouth. The recordings were made with a 
Marantz PMD670 portable solid state recorder 
using a sampling rate of 44.1 kHz.  

2.4. Measurements 

Using Praat, a wide-band spectrogram was prod-
uced for each utterance and two vertical markers 
placed by hand to demarcate the /uː/ segment. 
Measurements of the centre frequencies of the F1 
and F2 contours of each /uː/ token were made with 
the aid of the Praat formant tracker in the 
following way. For each token, the accuracy of the 
formant tracking overlay was checked visually. 
The default number of formants picked by the 
algorithm was five, but this was adjusted to six or 
seven in cases where lower formants were skipped. 
A script was used to calculate the total duration of 

each /uː/ segment and divide it into ten equal 
intervals, as in Figure 1. The script measured the 
centre frequencies of F1 and F2 at each +10% step, 
thus time-normalising each formant contour. The 
resulting measurements were checked graphically 
and in cases where an implausible measurement 
arose, the formant was remeasured manually using 
the spectrogram and the spectral slice provided by 
Praat.  

3. RESULTS AND ANALYSIS 

As an example, the F2 contours of /uː/ for the six 
tokens produced by four of the twenty speakers are 
shown in Figure 2. Differences among speakers are 
clearly evident: individuals differ considerably in 
the shape and relative frequency of their formant 
contours. This is the case for all speakers, for F1 
and even more so for F2. Some speakers assume a 
relatively straight trajectory (e.g. S6 in Figure 2) 
while others exhibit a great deal of movement, 
(e.g. S10). Within a speaker, positions and shapes 
of the formant contours are relatively consistent.  

To quantify the dynamic differences observed 
between speakers, polynomial equations were 
fitted to the formant contours in the following way 
using Matlab (see [7] for further elaboration of this 
method). Using linear regression the F1 and F2 
contours of each token were fitted with each of a 
quadratic, a cubic and a quartic polynomial of the 
forms: 

y = a0 + a1t + a2t2  
y = b0 + b1t + b2t2 + b3t3  
y = c0 + c1t + c2t2 + c3t3 + c4t4 

where y represents the formant frequency, t 
represents time on a normalised scale from 1 to 9 
(for the nine +10% steps), and a0, a1 and a2, b0, b1, 
b2 b3, c0, c1, c2, c3 and c4 are the coefficients which 
define the quadratic, cubic and quartic 
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Figure 1: Spectrogram of a token of /uː/ produced 
by S10, showing +10% steps at which F1 and F2 
frequency measurements were made.  
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Figure 2: F2 frequency contours of /uː/ for the six 
tokens produced by each of S1, S6, S8 and S10.  

ICPhS XVI Saarbrücken, 6-10 August 2007

1826 www.icphs2007.de

http://www.icphs2007.de/


respectively. 
    An example of the three polynomials fitted to 
the F2 contour of a token of /uː/ produced by S1 is 
given in Figure 3. The original formant 
measurements are shown, together with the 
quadratic, cubic and quartic fittings. The equations 
of these curves are:  

y = 1280 - 102t + 8.82t2  
y = 1140 + 37.7t – 24.4t2 + 2.21t3  
y = 1040 + 169t – 76.5t2 + 10t3 – 0.391t4 

The quadratic provides a reasonable fit to the 
contour (R = 0.7439), but is improved on by the 
cubic (R = 0.8899) and slightly further improved  
by the quartic (R = 0.9087). Similar improvements 
in goodness of fit are exhibited across the data set 
for both F1 (mean R: quadratic 0.8819, cubic 
0.9343, quartic 0.9668) and F2 (mean R: quadratic 
0.8258, cubic 0.9232, quartic 0.9560). 

The next step was to evaluate the effectiveness 
in distinguishing speakers of the dynamic 
information captured by each of the polynomials. 
Direct discriminant function analyses were 
performed testing the polynomial coefficients as 
predictors of ‘membership’ of the twenty speakers, 
S1, S2, … (k = 20). Separate analyses were run for 
each formant. For comparison, a second 
discriminant analysis with the same number of 
predictors was run for each analysis, as shown in 
Table 1. The second set of predictors was a subset 
of the original measurements of the same formant, 
selected at equidistant intervals along the contour. 

All analyses achieve much greater 
discrimination of speakers than chance level (1/20 
= 5%). The F2 analyses consistently provide higher 
levels of classification than F1 analyses. This is 
compatible with visual observation of graphs of the 
contours in which F2 exhibits greater between-
speaker variation. It is also consistent with findings  

from previous research [e.g. 4, 5, 8] where higher 
formants have tended to yield greater levels of 
individual variation than F1. 

The analyses based on the quadratic and cubic 
polynomial coefficients provide the same or more 
speaker-distinguishing information than those with 
the same number of predictors based on the 
original measurements. For F1, the quadratic-based 
predictors (p = 3) performed equally well as the 
original measurements, and the cubic-based 
predictors (p = 4) were 6.7% better. For F2, 
improvements of 3.3% and 14.2% were made by 
quadratic-based and cubic-based predictors 
respectively. In other words, fitting these curves 
with quadratic or cubic polynomials enables the 
speaker-specific information conveyed by formant 
dynamics to be captured more efficiently. The 
quartic fitting (p = 5), however, does not improve 
the classification achieved: a decrease of 6.7% for 
F1 and of 15% for F2 is observed.  

In general, the more predictors included in a 
discriminant analysis, the greater the classification 
achieved, depending on the degree of speaker-
specific information contributed by each predictor. 
This can be seen for the analyses based on 3, 4 and 
5 original measurement predictors for F1 and F2 
(except for the discrepancy of F2 – 20%, 40%, 
60%, 80%) [cf. 5]. However there is a limit to the 
number of predictors which can be included in a 
discriminant analysis. It is not possible simply to 
include a large number of direct measurements of 
the contours as predictors, partly because the 
predictors will exhibit a great deal of correlation 
amongst themselves, and also because discriminant 
analysis requires the number of predictors to be 
smaller than the sample size of the smallest group. 
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Figure 3: Graph of the measurements of the F2 
contour of the first token of /uː/ produced by S1. 
Quadratic, cubic and quartic polynomials are fitted.   

Table 1: Discriminant analyses run on the data set. The 
first column shows p, the number of predictors, the 
second lists the predictors, the third gives the 
classification rate resulting (CR) and the fourth gives an 
estimation of the ‘worth’ of each predictor, CR/p.  

p Predictors CR (%) CR/p 
3 
3 
4 
4 
5 
5 

F1 – 20%, 50%, 80% 
F1 – a0, a1, a2 

F1 – 20%, 40%, 60%, 80% 
F1 – b0, b1, b2, b3 
F1 – 10%, 30% 50%, 70%, 90% 
F1 – c0, c1, c2, c3, c4 

28.3 
28.3 
32.5 
39.2 
36.7 
30.0 

9.4 
9.4 
8.1 
9.8 
7.3 
6.0 

3 
3 
4 
4 
5 
5 

F2 – 20%, 50%, 80% 
F2 – a0, a1, a2 
F2 – 20%, 40%, 60%, 80% 
F2 – b0, b1, b2, b3 

F2 – 10%, 30% 50%, 70%, 90% 
F2 – c0, c1, c2, c3, c4 

41.7 
45 
35 
49.2 
49.2 
34.2 

13.9 
15 
8.8 
12.3 
9.8 
6.8 

5 F1 – b0, b3, F2 – a0, a1, a2 51.7 - 
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In the present study, since n = 6 the maximum 
number of predictors is 5. 

The efficiency brought about by expressing this 
formant dynamic information in terms of quadratic 
or cubic polynomial coefficients is very useful, 
but, given that the cubic fitting requires one more 
predictor than the quadratic, which approximation 
is the most efficient? The ultimate aim is to extract 
the optimal amount of speaker-distinguishing 
information for the number of predictors 
permissible; the fewer predictors needed to exploit 
the F1 and F2 dynamics, the greater the scope for 
including further predictors based on F3, F4, 
duration, etc. To assess the ‘worth’ of each 
predictor in the discriminant analyses, the 
classification rate resulting from each analysis was 
divided by the number of predictors, as shown in 
the rightmost column of Table 1. 

For F2, and overall, the quadratic-based 
analysis gave the highest value per predictor, with  
each predictor having a worth of 15%, in contrast 
to 12.3% for the cubic-based analysis. For F1, the 
cubic-based analysis gave only slightly better value 
per predictor than the quadratic-based (9.8% 
versus 9.4%). So although the cubic polynomials 
provide a better fit to the F1 and F2 contours, it 
appears that a worthwhile amount of speaker-
distinguishing information can be captured with 
the quadratic approximations, saving the expense 
of the additional predictor. A final discriminant 
analysis was thus carried out using five of the 
highest ‘worth’ predictors – the three F2 quadratic-
based predictors, and two F1 cubic based 
predictors, F1b0 and F1b3. The two F1 predictors 
were chosen based on the structure matrix for the 
corresponding discriminant analysis, as those 
contributing most to the discrimination. This 
analysis achieved a classification rate of 51.7%, a 
further demonstration that selecting efficient 
formant dynamic predictors offers a powerful 
method for speaker discrimination.  

4. CONCLUSION 

Formant dynamics are an interesting source of 
speaker-discriminating information, reflecting both 
differences in speakers’ vocal tract morphology 
and individual differences in the articulatory 
trajectories chosen to produce each sound. In this 
study formant dynamics of /uː/ were quantified for 
20 male speakers of SSBE. Large between-speaker 
variation was observed in the shape and frequency 
of F1 and F2 contours, especially in F2. 

Characterising the formant contours with quad-
ratic, cubic and quartic polynomials enabled 
speaker-distinguishing information to be captured 
with fewer numbers. In discriminant analysis, 
cubic approximations offered the best classific-
ation rates (F1: 39.2%, F2: 49%), but the quadratic 
approximations were the most efficient, carrying 
greater speaker-distinguishing information per pre-
dictor. Further work should build on these findings 
to develop efficient techniques for capturing a 
speaker’s individuality using formant dynamics. 
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