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ABSTRACT

A dynamical model of phonetic detail is presented.
The model is compared to an exemplar-based model,
which has been shown to offer an account of
(presumed) frequency-dependent lenition processes.
The dynamical model accounts for the same lenition
patterns. However, there is a key difference. In con-
trast to the exemplar model, the dynamical model
provides a handle on the timecourse of assembling
phonological representations.

Keywords: exemplar theory, sound change, dynam-
ics, timecourse

1. AN EXEMPLAR-BASED MODEL OF
LENITION

In this paper, we discuss lenition mainly in the di-
achronic sense of change over time, rather than
as the synchronic result of a phonological rule ap-
plied to an underlying representation. One di-
achronic example is Grimm’s law, according to
which Proto-Indoeuropean voiceless stops became
Germanic voiceless fricatives (e.g. PIE *[

�
] > Gmc

*[ � ]). Grimm’s law can be seen as part of a “weak-
ening chain” of PIE sounds: � >

�
> � > � > ∅.

The raw motivation for lenition is assumed to be
a tendency to undershoot the degree of oral constric-
tion in contexts favoring gestural weakening (e.g. in
unstressed syllables, codas, or intervocalically) [1].

According to Bybee, at least some lenition pro-
cesses apply variably based on word frequency [3].
One example is schwa reduction (e.g. memory tends
to be pronounced [ �����	��
 ]). Another is t/d-deletion
(e.g. told tends to be pronounced [

����
]). Once a le-

nition process has begun, Bybee’s claim amounts to
saying that words with high frequency will weaken
more quickly over time than rare words.

Pierrehumbert has developed an exemplar-based
model of phonetic detail and has shown how this
model can capture four (presumed) key properties of
an unfolding lenition process [8]. First, each word
displays a certain amount of variability in produc-
tion. Second, as embodied in Bybee’s claim, the
effect of word frequency on lenition rates is gradi-
ent. Third, the effect of word frequency on lenition

rates should be observable within the speech of indi-
viduals; it is not an artifact of averaging data across
the different generations which make up a speech
community. Finally, the effect of word frequency on
lenition rates should be observable both synchroni-
cally (by comparing the pronunciation of words of
different frequency) and diachronically (by examin-
ing the evolution of word pronunciations over the
years within each person’s speech).

In Pierrehumbert’s exemplar-based model, a
given linguistic category is stored in a space whose
axes define the parameters of the category [8]. This
continuous space is quantized into discrete cells
based on perceptual limits. Each cell is considered
to be a bin for perceptual experiences, and Pierre-
humbert considers these bins to be the actual exem-
plars. When the system receives an input, it places
it in the appropriate bin. All bins start out empty.
When an input is added to a bin, this is equivalent
to the storage of an exemplar. The new exemplar is
given a categorical label based on the labels of other
nearby exemplars. A decay process decreases the
activation of an exemplar over time, corresponding
to memory decay.

During production, a particular exemplar from
memory is chosen to be produced, where the likeli-
hood of being chosen depends on how activated the
exemplar is. The chosen exemplar is shifted by a
bias in the direction of lenition.

Pierrehumbert’s exemplar model derives the four
properties of lenition discussed earlier as follows.
Variability in production is directly accounted for
since production is modeled as a random sampling
of all the exemplars stored. Each lexical item has
its own exemplars, and each production/perception
loop causes the addition of a new exemplar to the
set. This new exemplar is more lenited than the
speaker originally intended due to biases in produc-
tion, so the distribution of exemplars skews over
time. In a given period of time, the number of
production/perception loops an item goes through is
proportional to its frequency. So, the amount of le-
nition associated with a given item shows gradient
variation according to the item’s frequency. As all
processes directly described by the exemplar model
occur within a single individual, lenition is clearly
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Figure 1: Component fields of /d/, /s/. y-axis rep-
resents activation. /d/ and /s/ have nearly identical
CL fields, as they are both alveolars, but they dif-
fer in CD.

observable within the speech of individuals. Di-
achronically, lenition will proceed at a faster rate for
more frequent items because they go through more
production/perception loops in a given time frame.
The synchronic consequence of this is that at a point
in time, more frequent items will be more lenited in
the speech of an individual than less frequent items.

In sum, the exemplar-based model offers a direct
way to represent the fine phonetic substance of lin-
guistic categories. The model also offers a way to
capture the assumed effects of frequency on the un-
folding lenition process.

2. A DYNAMICAL MODEL

Although our model does not commit to any specific
phonological framework or model, we will follow
Articulatory Phonology [2] in order to clarify con-
cepts. Thus, let us assume that lexical items take
the form of gestural scores (we could have said seg-
ments with features or orosensory variables [5]). A
gestural score, for current purposes, is simply a se-
quence of gestures (we put aside the intergestural
temporal relations that also must be specified as part
of a full gestural score). For example, the sequence
/ ����� / consists of three oral gestures - a tongue tip
gesture for / � /, a tongue dorsum gesture for / � /, and
a tongue tip gesture for / � /. Gestures are specified
by target values for the vocal tract variables of con-
striction location (CL) and constriction degree (CD),
parameters defining the target vocal tract state. For
example, /d/ and /s/ have the CL target value [alve-
olar], an actual numerical value in the model of [2].
The CD value of / � / is [stop] and for / � / it is [frica-
tive].

The first crucial part of our proposal concerns the
way in which these parameters are specified. In our
model, each parameter is not specified by a unique
numerical value as above, but rather by a continuous
activation field over a range of values for the param-
eter. Fields then resemble distributions depicting the
continuous details of vocal tract variables. A lexical
item therefore is a gestural score where the param-
eters of each gesture are represented by their own

fields. Schematic fields corresponding to the (oral)
gestures of the consonants in / ����� / are given in Fig-
ure 1.

In our model, lexical items are manipulated using
the formalism of Dynamic Field Theory [4], hence-
forth DFT. In a DFT formalism, gestural parameters
are represented using continuous activation fields.
The basic dynamics governing each field are de-
scribed by the following equation:

(1) τ
dp(x, t)

dt
= −p(x, t) + h + s(x, t)

where p is the field in memory (a function of a
continuous variable x), h is the field’s resting acti-
vation level (a lower limit on activation), τ is a con-
stant corresponding to the rate of decay of the field
(i.e. the rate of memory decay), and s is a field rep-
resenting time dependent external input to the sys-
tem (i.e. perceived token) in the form of a localized
activation spike.

The τdp(x, t)/dt = −p(x, t)+h part of the equa-
tion is fundamentally the same as the exponential
decay equation, dx/dt = −x, but each trajectory
is shifted on the y-axis by h. Much as the parame-
ter x decays in the exponential equation, the activa-
tion along the field p wanes over time and falls to its
resting level h, unless the other terms in the equa-
tion slow or reverse the process. The input term
s(x, t) represents sensory input. More specifically,
input is a peak of activation registered by the percep-
tion module. This peak is located at some detected
x-axis value along the field. This value is assumed to
be sub-phonemic in character. For example, we as-
sume that speakers can perceive gradient differences
in Voice Onset Time values, constriction location,
and constriction degree within the same phonemic
categories. In the current model, the input term is
formulated as e−(x−off )2 , where off is the detected
value, or offset, along the x-axis of the field.

Once input is presented, a field can evolve to a
stable attractor state, that is, a localized peak at a
value corresponding to the input. The state is stable
in the sense that it can persist even after the input has
been removed. In effect, the field for the lexical item
has retained a memory of the sub-phonemic detail in
the recently perceived input (a concrete example is
presented later in Figure 4).

We now turn to the second and perhaps most cru-
cial part of our proposal. Formalizing lexical rep-
resentations with dynamic fields adds a timecourse
dimension to the gestural specification process. If
a lexical representation contains a /d/, the CD and
CL parameters for this /d/ are not statically assigned
to their (language- or speaker- specific) canonical
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Figure 2: Sampling was simulated with a decision
threshold d = 5 and τ = 10. The first field (left,
h0 = 1) reached the decision threshold at t = 25,
and the second field (right, h0 = 2) reached the
decision threshold at t = 9 (where t is an arbitrary
unit of simulation time). The field with higher ini-
tial resting activation reached the decision thresh-
old faster.

values, e.g., CL = [alveolar]. Rather, assigning val-
ues to these parameters is a time-dependent process,
captured as the evolution of a dynamical system over
time. In short, lexical representations are not static
units. This allows us to derive predictions about the
timecourse of assembling different lexical represen-
tations.

The specification process begins by a temporary
increase in the resting activation of the field (i.e.
pushing the field up) caused by an intent to pro-
duce a particular lexical item. Resting activation
increases steadily but noisily until some part of the
field crosses a decision threshold and becomes the
parameter value used in production. This scheme
ensures that the areas of maximum activation are
likely to cross the decision threshold first. After a
decision has been made, resting activation returns to
its pre-production level.

The gestural specification process is affected by
the pre-production resting activation of the field, in
that a field with high resting activation is already
“presampled”, and thus automatically closer to the
decision threshold. This leads to faster decisions
made during production of more activated fields,
and by extension more frequent lexical items. We
have confirmed this behavior by computer simula-
tion. See Figure 2 which compares two fields iden-
tical in all respects except for resting activation. The
field with the higher resting activation reaches the
decision threshold first. This prediction has been
confirmed experimentally by studies showing that
pictures of more frequent words are named faster
than pictures of less frequent words [6].

In the exemplar model, neither production nor
perception has any timecourse. Both processes are
instantaneous. Thus, the effect of frequency in the
speed of producing different lexical items cannot be
accounted for in that model. See [7] for further ex-
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Figure 3: Variability in production. Histogram of
selected values over 100 simulations of gestural
specification. Histogram overlaid on top of field
to show clustering of selected values near the field
maximum.

−10 −5 0 5 10
0

0.05

0.1

memory field

phonetic parameter
ac

tiv
at

io
n

−10 −5 0 5 10
0

0.05

0.1

input activation spike

phonetic parameter
−10 −5 0 5 10
0

0.05

0.1

memory field after input

phonetic parameter

Figure 4: (Left) Field of lexical item in memory.
(Middle) Input function (output of perception cor-
responding to s(x, t) in equation 1). (Right) Field
of lexical item in memory after input is added to
it. Field shows increased activation around area of
input.

emplification of timecourse predictions.
In addition, the noisy character of the specifica-

tion process allows for variation in the value ulti-
mately specified. Figure 3 shows the results of a
series of simulations verifying that although there
is variation in selected values, they cluster reliably
around the maximally activated point of the field.

At present, we only model how parameter fields in
the lexicon are affected during speech recognition.
Activation in each lexical field increases slightly
around the range of the input parameter value. More
precisely, the perceptual system converts a heard
production into an input function s(x, t). This spike
is directly added to the appropriate field, resulting in
increased activation at some point along the field’s
x-axis (see Figure 4). Since activation fades slowly
over time, only areas of the field that receive re-
inforcement are likely to remain activated. So, a
peak in activation may shift over time depending on
which region of the field is reinforced by input.

2.1. Lenition in the dynamical model
Given an initial field representing the current mem-
ory state of a lexical item, we can simulate lenition
using the dynamical model described above. Fig-
ure 5 shows the results of one set of simulations.
Shown are the state of the simulation at the start-
ing state, after 50 samples of a token, and after 100
samples. Each time step of the simulation corre-
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Figure 5: Output of lenition simulation. x-axis
represents a phonetic dimension (e.g. constriction
degree during t/d production). Each curve repre-
sents a distribution of a particular category over
the x-axis at a point in time. As time progresses,
the distribution shifts to the left (i.e. there is more
undershoot/lenition) and becomes broader.

sponds to a production/perception loop. Produc-
tion was performed as described above by picking
a value from the field and adding noise and a bias
to it. This produced value, encoded by an activa-
tion spike of the form e−(x−off )2 , where off =
sample(p) + noise + bias, was fed back into the
system as input.

As can be seen in Figure 5, at the point when leni-
tion begins, the field represents a narrow distribution
of activation and there is little variability when sam-
pling the field during production. As lenition pro-
gresses, the distribution shifts to the left. During this
time the distribution becomes asymmetrical, with a
tail on the right corresponding to residual traces of
old values for the parameter. It also grows wider,
corresponding to an increase in parameter variation
while the change occurs.

Like the exemplar model above, the dynami-
cal model can derive the four lenition properties.
Variability in production is accounted for by noise
during the gestural specification process. Each
lexical item has its own fields and each produc-
tion/perception loop causes a shift in the appropri-
ate field towards lenition due to biases in produc-
tion (see Figure 4 for an example of a field start-
ing to skew to the left). In a given period of time,
the number of production/perception loops an item
goes through is proportional to its frequency. So,
the amount of lenition associated with a given item
shows gradient variation according to the item’s fre-
quency. All the processes described here occur
within a single individual, so lenition is clearly ob-
servable within the speech of individuals. Diachron-
ically, lenition will proceed at a faster rate for more
frequent items, again because they go through more
production/perception loops in a given time frame.
This same mechanism is evident synchronically as

well, since at any single point in time, more frequent
items will be more lenited than less frequent items.

3. CONCLUSION
The dynamical model of phonetic detail presented
here remains consistent with one key aspect of gen-
erative theories of representation. Instead of repre-
senting categories extensionally as arbitrarily large
exemplar sets, linguistic units and their parameters
can have singular representations. These are the dy-
namic fields in our specific proposal. It is these uni-
tary representations, rather than a token by token ex-
pansion of the exemplar sets, that drifts in sound
change. Second, the dynamical model inherently
deals with time. Since both the exemplar and the
dynamical model are at least programmatically de-
signed to include production and perception, which
unfold in time, this seems to be a key property.
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